Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Epigenomes ; 8(2)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651368

RESUMO

BACKGROUND: One of the mechanisms regulating the biological activity of tumor necrosis factor (TNF) in cells is the co-expression of TNFR1/TNFR2 receptors. A model with a differential level of receptor expression is required to evaluate the contribution of these mechanisms. AIM: The development of a cellular model to compare the effects of TNF on cells depending on the presence of both receptors and TNFR2 alone. METHODS: TNFR1 absence modifications of ZR-75/1 and K-562 cell lines were obtained by TNFR1 knockout. The presence of deletions was confirmed by Sanger sequencing, and the absence of cell membrane receptor expression was confirmed by flow cytometry. The dose-dependent effect of TNF on intact and knockout cells was comparatively evaluated by the effect on the cell cycle, the type of cell death, and the profile of expressed genes. RESULTS: Knockout of TNFR1 resulted in a redistribution of TNFR2 receptors with an increased proportion of TNFR2+ cells in both lines and a multidirectional change in the density of expression in the lines (increased in K562 and decreased in ZR75/1). The presence of a large number of cells with high TNFR2 density in the absence of TNFR1 in the K562 cells was associated with greater sensitivity to TNF-stimulating doses and increased proliferation but did not result in a significant change in cell death parameters. A twofold increase in TNFR2+ cell distribution in this cell line at a reduced expression density in ZR75/1 cells was associated with a change in sensitivity to low cytokine concentrations in terms of proliferation; an overall increase in cell death, most pronounced at standard stimulating concentrations; and increased expression of the lymphocyte-activation gene groups, host-pathogen interaction, and innate immunity. CONCLUSIONS: The absence of TNFR1 leads to different variants of compensatory redistribution of TNFR2 in cellular models, which affects the type of cell response and the threshold level of sensitivity. The directionality of cytokine action modulation and sensitivity to TNF levels depends not only on the fraction of cells expressing TNFR2 but also on the density of expression.

2.
Life (Basel) ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541608

RESUMO

Doxorubicin (DOX) is a prevalent anticancer agent; however, it is unfortunately characterized by high cardiotoxicity, myelosuppression, and multiple other side effects. To overcome DOX limitations, two novel pyridoxine-derived doxorubicin derivatives were synthesized (DOX-1 and DOX-2). In the present study, their antitumor activity and mechanism of action were investigated. Of these two compounds, DOX-2, in which the pyridoxine fragment is attached to the doxorubicin molecule via a C3 linker, revealed higher selectivity against specific cancer cell types compared to doxorubicin and a promising safety profile for conditionally normal cells. However, the compound with a C1 linker (DOX-1) was not characterized by selectivity of antitumor action. It was revealed that DOX-2 obstructs cell cycle progression, induces apoptosis via the mitochondrial pathway without the development of necrosis, and showcases antioxidant capabilities, underlining its cell-regulatory roles. In contrast to doxorubicin's DNA-centric mechanism, DOX-2 does not interact with nuclear DNA. Given these findings, DOX-2 presents a new promising direction in cancer therapeutics, which is deserving of further in vivo exploration.

3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138998

RESUMO

This research delves into the intricate landscape of tumor necrosis factor-alpha (TNF-α) signaling, a multi-functional cytokine known for its diverse cellular effects. Specifically, we investigate the roles of two TNF receptors, TNFR1 and TNFR2, in mediating TNF-α-induced transcriptional responses. Using human K562 cell lines with TNFR1 and TNFR2 knockouts, we explore changes in gene expression patterns following TNF-α stimulation. Our findings reveal distinct transcriptional profiles in TNFR1 and TNFR2 knockout cells, shedding light on the unique contributions of these receptors to TNF-α signaling. Notably, several key pathways associated with inflammation, apoptosis, and cell proliferation exhibit altered regulation in the absence of TNFR1 or TNFR2. This study provides valuable insights into the intricate mechanisms governing TNF-α signaling and its diverse cellular effects, with potential implications for targeted therapeutic strategies.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Células K562 , Citocinas/metabolismo
4.
Cells ; 12(24)2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38132130

RESUMO

Hypoxia leads to metabolic changes at the cellular, tissue, and organismal levels. The molecular mechanisms for controlling physiological changes during hypoxia have not yet been fully studied. Erythroid cells are essential for adjusting the rate of erythropoiesis and can influence the development and differentiation of immune cells under normal and pathological conditions. We simulated high-altitude hypoxia conditions for mice and assessed the content of erythroid nucleated cells in the spleen and bone marrow under the existing microenvironment. For a pure population of CD71+ erythroid cells, we assessed the production of cytokines and the expression of genes that regulate the immune response. Our findings show changes in the cellular composition of the bone marrow and spleen during hypoxia, as well as changes in the composition of the erythroid cell subpopulations during acute hypoxic exposure in the form of a decrease in orthochromatophilic erythroid cells that are ready for rapid enucleation and the accumulation of their precursors. Cytokine production normally differs only between organs; this effect persists during hypoxia. In the bone marrow, during hypoxia, genes of the C-lectin pathway are activated. Thus, hypoxia triggers the activation of various adaptive and compensatory mechanisms in order to limit inflammatory processes and modify metabolism.


Assuntos
Medula Óssea , Baço , Camundongos , Animais , Medula Óssea/patologia , Eritropoese/fisiologia , Hipóxia/patologia , Células Eritroides/patologia
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958735

RESUMO

Mouse erythropoiesis is a multifaceted process involving the intricate interplay of proliferation, differentiation, and maturation of erythroid cells, leading to significant changes in their transcriptomic and proteomic profiles. While the immunoregulatory role of murine erythroid cells has been recognized historically, modern investigative techniques have been sparingly applied to decipher their functions. To address this gap, our study sought to comprehensively characterize mouse erythroid cells through contemporary transcriptomic and proteomic approaches. By evaluating CD71 and Ter-119 as sorting markers for murine erythroid cells and employing bulk NanoString transcriptomics, we discerned distinctive gene expression profiles between bone marrow and fetal liver-derived erythroid cells. Additionally, leveraging flow cytometry, we assessed the surface expression of CD44, CD45, CD71, and Ter-119 on normal and phenylhydrazine-induced hemolytic anemia mouse bone marrow and splenic erythroid cells. Key findings emerged: firstly, the utilization of CD71 for cell sorting yielded comparatively impure erythroid cell populations compared to Ter-119; secondly, discernible differences in immunoregulatory molecule expression were evident between erythroid cells from mouse bone marrow and fetal liver; thirdly, two discrete branches of mouse erythropoiesis were identified based on CD45 expression: CD45-negative and CD45-positive, which had been altered differently in response to phenylhydrazine. Our deductions underscore (1) Ter-119's superiority over CD71 as a murine erythroid cell sorting marker, (2) the potential of erythroid cells in murine antimicrobial immunity, and (3) the importance of investigating CD45-positive and CD45-negative murine erythroid cells separately and in further detail in future studies.


Assuntos
Medula Óssea , Transcriptoma , Animais , Camundongos , Células da Medula Óssea , Diferenciação Celular , Células Eritroides , Eritropoese/genética , Fígado , Fenil-Hidrazinas , Proteômica
6.
Biomedicines ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37893178

RESUMO

Adoptive T-cell therapies tailored for the treatment of solid tumors encounter intricate challenges, necessitating the meticulous selection of specific target antigens and the engineering of highly specific T-cell receptors (TCRs). This study delves into the cytotoxicity and functional characteristics of in vitro-cultured T-lymphocytes, equipped with a TCR designed to precisely target the cancer-testis antigen NY-ESO-1. Flow cytometry analysis unveiled a notable increase in the population of cells expressing activation markers upon encountering the NY-ESO-1-positive tumor cell line, SK-Mel-37. Employing the NanoString platform, immune transcriptome profiling revealed the upregulation of genes enriched in Gene Ontology Biological Processes associated with the IFN-γ signaling pathway, regulation of T-cell activation, and proliferation. Furthermore, the modified T cells exhibited robust cytotoxicity in an antigen-dependent manner, as confirmed by the LDH assay results. Multiplex immunoassays, including LEGENDplex™, additionally demonstrated the elevated production of cytotoxicity-associated cytokines driven by granzymes and soluble Fas ligand (sFasL). Our findings underscore the specific targeting potential of engineered TCR T cells against NY-ESO-1-positive tumors. Further comprehensive in vivo investigations are essential to thoroughly validate these results and effectively harness the intrinsic potential of genetically engineered T cells for combating cancer.

7.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894816

RESUMO

TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Neoplasias/metabolismo , Imunoterapia Adotiva , Citotoxicidade Imunológica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Int J Mol Sci ; 24(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175837

RESUMO

Erythroid cells are emerging players in immunological regulation that have recently been shown to play a crucial role in fetomaternal tolerance in mice. In this work, we set ourselves the goal of discovering additional information about the molecular mechanisms of this process. We used flow cytometry to study placental erythroid cells' composition and BioPlex for the secretome profiling of 23 cytokines at E12.5 and E19.5 in both allogeneic and syngeneic pregnancies. We found that (1) placental erythroid cells are mainly represented by CD45+ erythroid cells; (2) the secretomes of CD71+ placental erythroid cells differ from the ones in syngeneic pregnancy; (3) CCL2, CCL3, CCL4 and CXCL1 chemokines were secreted on each day of embryonic development and in both types of pregnancy studied. We believe that these chemokines lure placental immune cells towards erythroid cells so that erythroid cells can induce anergy in those immune cells via cell-bound ligands such as PD-L1, enzymes such as ARG1, and secreted factors such as TGFß-1.


Assuntos
Células Eritroides , Placenta , Animais , Feminino , Camundongos , Gravidez , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocinas , Citometria de Fluxo , Imunossupressores
9.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551661

RESUMO

The treatment of HER2-positive cancers has changed significantly over the past ten years thanks to a significant number of promising new approaches that have been added to our arsenal in the fight against cancer, including monoclonal antibodies, inhibitors of tyrosine kinase, antibody-drug conjugates, vaccination, and particularly, adoptive-T-cell therapy after its great success in hematological malignancies. Equally important is the new methodology for determining patients eligible for targeted HER2 therapy, which has doubled the number of patients who can benefit from these treatments. However, despite the initial enthusiasm, there are still several problems in this field represented by drug resistance and tumor recurrence that require the further development of new more efficient drugs. In this review, we discuss various approaches for targeting the HER2 molecule in cancer treatment, highlighting their benefits and drawbacks, along with the different mechanisms responsible for resistance to HER2-targeted therapies and how to overcome them.

10.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428967

RESUMO

Nucleated erythroid cells (NECs) are the precursors of erythrocytes. They can be found in various hematopoietic tissues or in the blood. Recently, they have been shown to be active players in immunosuppression through the synthesis of arginase-2 and reactive oxygen species. In this work, we studied NECs in adult bone marrow, umbilical cord blood, and foetal liver parenchyma using single-cell RNA sequencing and found that: (1) all studied NECs expressed the same set of genes, which was enriched in "GO biological process" immunity-related terms; (2) early and late NECs had differential expression of the genes associated with immunosuppression, cell cycle progression, apoptosis, and glycolysis; (3) NECs from different tissues of origin had differential expression of the genes associated with immunosuppression.


Assuntos
Eritrócitos , Transcriptoma , Adulto , Humanos , Transcriptoma/genética , Contagem de Células , Eritrócitos/metabolismo , Sangue Fetal , RNA/genética , RNA/metabolismo
11.
Genes (Basel) ; 13(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35886060

RESUMO

Autoimmune regulator (AIRE) is a multifunctional protein that is capable of inducing tissue-specific antigens' (TSAs) gene expression, a key event in the induction of self-tolerance, that is usually expressed and functions in the thymus. However, its expression has been detected outside the thymus and cells expressing the gene have been named extra-thymic AIRE expressing cells (eTACs). Here, we discuss the finding of AIRE and TSAs gene expression in CD71+ cells from human fetal liver parenchyma, which are mostly represented by CD71+ erythroid cells.


Assuntos
Antígenos , Tolerância Imunológica , Expressão Gênica , Humanos , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...